

Local and Global Biodiversity Monitoring with the Internet of Animals

Roland Kays North Carolina Museum of Natural Sciences North Carolina State University

Image from Shah 2021 NYT Magazine

Acknowledgements - representing big team efforts

ANIMAL TRACKING

CAMERA TRAPS

GORDON AND BETTY FOUNDATION

<text>

Temperature

Fires

Human Population

Deforestation

Habitat

Fresh Water

<u>The Physical World is</u> <u>Changing Fast</u>

What About the Animals?

- We need new data every year
- We need timely analyses
- Variety of species, locations, scales

Eastern Bluebird Population Trends

Fink, D., et al 2023. eBird Status and Trends, Data Version: 2022; Released: 2023. Cornell Lab of Ornithology

NOT THAT SURPRISING — GETTING THESE DATA IS HARD WORK

Kinkajou

Animal Tracking 1996

MY FIRST CAMERA TRAP PICTURE, ALBANY PINE BUSH, 2000

A lot has changed in the last 25 years! Big Data for Conservation

Wildlife Insights

A new platform to maximize the use of camera trap and passive sensor wildlife data for conservation

Goode

CONSERVATION

Camera Trap Data

Community database using AI to help process images

100 (Willions)

mages

11112 peci 11112 peci 22 111123

5000 Users Users Projects 0005 USers Countries **117 Million Images**

ANIMAL TRACKING DATA

Data	Help	Tools	Archiving		News
	Search doc	Search documentation		Login/Register	

You don't have to share data, but if you want to, we make it easy

MOVEBANK GROWTH

growing +11M/day

MoveApps is a no-code analysis platform for animal tracking data hosted by the Max Planck Institute of Animal Behavior. The aim is to make sophisticated analytical tools accessible to a larger audience.

Automated Workflow Analysis of Animal Tracking Data

- Apps: small analysis tools with customizable settings, built with R or Python
- Workflows: combinations of multiple apps

Segment Data by Speed

Threshold movement speed for segmentation Insert speed (in m/s)

4

Direction of positions selected

1 HISTORY

Select if you want to select locations with speed above or below the threshold

select above the threshold

) select below the threshold

CANCEL

SAVE CONFIGURATION

Animal Databases

The Internet

Internet of Animals Top 50 Databases

Types of Spatial Data

16M

Smithsonian 2M verts

1.3B

Internet of Animals Top 50 Databases

Kays and Wikelski 2023

Internet of Animals Top 50 Databases

Kays and Wikelski 2023

The Internet of Animals

1. Sensing

2. Live data

3. Linked data

4. Automated Analytics

What can we do with the Internet of Animals? The Vision

To Inform Conservation Decision Making

- Abundance: Animal Population Sizes and Trends
- Movement: Connectivity Between Populations

The Vision

To Inform Conservation Decision Making

- Abundance: Animal Population Sizes and Trends
- Movement: Connectivity Between Populations

The Vision

We're not going to achieve this today

But

We can start to plot a course to get us there

Part #1. Abundance & Trend Maps

Hardware

- Motion Sensitive
- Digital
- Video
- Inexpensive
- Many cameras

Collecting Data at Scale

- Large-scale scientific collaboration (not citizen science)
- Every Fall since 2019
- Data published, everyone co-author

Brainchild of Bill McShea Smithsonian

Snapshot USA

<u>Snapshot USA 2019</u> 127 Participants All 50 States

Snapshot USA

2019: 1503 cameras in 109 arrays 2020: 1400 cameras in 103 arrays 2021: 1400 cameras in 106 arrays 2022: 2170 cameras in 131 arrays 2023: 2173 cameras in 146 arrays

Snapshot EURO

2021: 1100 cams in 57 arrays2022: 941 cams in 69 arrays23 Countries

Snapshot Japan

2023 – 90 Locations

TRAILCAM03

11/02/2023

& 64 F

Camera trap data collection so far

iNaturalist as opportunistic wildlife sightings, photo verified

- Upload a picture of anything
- Community helps identify

iNaturalist as opportunistic wildlife sightings, photo verified

- Example From Chapel Hill
- >3000 iNat mammal observations
- 256 in in the last month

1.5M North American Mammal Records

Data Integration: new project underway

North American Mammal Records

Bobcat occupancy combining cameras + iNat [in prep)

Repeating for more species

2017-12-12 6:13:35 AM M 1/10

We also learn about the ecological drivers Example: 2 human factors

How can we extract trend info from mammal data?

Back to The Vision

To Inform Conservation Decision Making

- Abundance: Animal Population Sizes and Trends
- Movement: Connectivity Between Populations

Part #2. Animal Movement & Habitat Connectivity

Habitat Connectivity is Critical to allow animals to:

- 1. Maintain geneflow between populations
- 2. Recolonize areas where they have gone extinct
- 3. Find newly suitable habitat due to climate change

GOLDEN AGE OF ANIMAL TRACKING

Connectivity models are can be improved

If we have so much animal tracking data, why are we still treating animals like electrons? Greensboro Furham Rocky Mount Raleigh Green /ille Fayetteville Jacksonville Wilmington

S

Habitat Connectivity Modeling

Old way = Circuitscape Animals = electrons

New Way

= Animal Movement Models

Animals = Animals

Agent Based Models

1

Recent Example Study

Movement models and simulation reveal highway impacts and mitigation opportunities for a metapopulation-distributed species

Christina M. Aiello^O · Nathan L. Galloway · Paige R. Prentice · Neal W. Darby · Debra Hughson · Clinton W. Epps

 Derive animal movement decision rules from real tracking data

2. Simulate animals moving through 'experimental' landscapes to figure out best road crossing places Simulation Result: optimized crossing locations

Simulation Result:

Sheep habitat with and without connectivity across the road

Non-Study Population

Unoccupied Range

This is a type of digital twin

- Allow accurate, precise, and realtime monitoring and simulation of processes that are hard to observe in the real world
- dynamic model always updating with new data.
- users can interactively explore system dynamics and scenarios.

The three elements of a digital twin

EU Effort

#DestinE

"Develop a highly accurate digital model of the Earth on a global scale"

Digital Twin

Destination Earth

Flagship initiative of the European Commission

#DigitalEU #DestinE

Climate Model Underway

Forest Model Underway

Animal Model Needs Development

New bobcat movement around agriculture and solar facilities North Carolina Michael Levin

Internet of Animals Conclusion

- 1. Live Data
- 2. Linked Data
- 3. Automated Analytics

Internet of Animals Looking Forward - What could it be?

Possible Now

Counting animals camera traps

Population Monitoring

Futuristic

Counting animals with doorbell cameras, car sensors, and edge computing

Internet of Animals Looking Forward - What could it be?

Population Monitoring

Counting insects with lidar on cars

Internet of Animals Looking Forward - What could it be?

Environmental Monitoring

Animals as environmental sensors (i.e. buoys)

Early earthquake and volcano detection
Internet of Animals Looking Forward - What could it be?

Disease Monitoring

Coordinated disease monitoring

One Health: combine wild, domestic, human

Summary

To Inform Conservation Decision Making

- Abundance: Animal Population Sizes and Trends
- Movement: Connectivity Between Populations

